Indian Statistical Institute, Bangalore

M. Math. Second Year, Second Semester

Advanced Functional Analysis

Back paper Examination

Date: 28-05-2015 Time: 3 hours

- Maximum marks: 100
- (1) Let X be a topological vector space. A subset A of X is said to be bounded if for every neighborhood V of 0, there exists s > 0, such that $A \subset tV$ for all t > s. Suppose A, B are bounded subsets of X, show that $A \bigcup B$ and A + B are bounded. [15]
- (2) Let Y be a normed linear space. Let D be a non-empty subset of Y. Show that D is bounded if and only if for every $f \in Y^*$ (Y^{*} is the space of bounded linear functionals on Y),

$$\sup\{|f(a)|: a \in D\} < \infty.$$

[15]

- (3) Let \mathcal{H} be a Hilbert space with ortho-normal basis $\{e_n : n \in \mathbb{N}\}$. Let $M = \text{span } \{e_n : n \in \mathbb{N}\}$. Consider the set $S = \{\frac{1}{n}e_n\} \bigcup \{0\}$. Show that S is compact. Show that the closed convex hull of S is not compact in M, but it is compact in \mathcal{H} . [20]
- (4) Let A be a bounded operator on a Hilbert space. Show that

$$||A||^2 = ||A^*A||.$$

[15]

- (5) Let \mathcal{A} be a unital C^* algebra. Show that a linear functional ϕ on \mathcal{A} is positive if and only if $\|\phi\| = \phi(1)$. [15]
- (6) Let C be the C^* algebra of 2×2 matrices. For a matrix $X = [x_{ij}]$, define $\phi(X) = \frac{1}{3}(x_{11} + 2x_{22})$. Show that ϕ is a state on C. Describe the GNS triple (\mathcal{H}, π, ξ) of ϕ . Compute the dimension of \mathcal{H} . [20]